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Electromagnetic Induction 

A changing magnetic field (intensity, movement)  
will  induce an electromotive force (emf) 

In a closed electric circuit,  
a changing magnetic field 

will produce an electric current 



Electromagnetic Induction 
Faraday’s Law 

The induced emf in a circuit is proportional to the rate of change 
of magnetic flux, through any surface bounded by that circuit. 

e = - dB / dt 



Faraday’s Experiments 

• Michael Faraday discovered induction in 1831. 

• Moving the magnet induces a current I.  

• Reversing the direction reverses the current. 

• Moving the loop induces a current. 

• The induced current is set up by an induced EMF. 
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Faraday’s Experiments 

• Changing the current in the right-hand coil induces  

 a current in the left-hand coil.  

• The induced current does not depend on the size of  

 the current in the right-hand coil. 

• The induced current depends on dI/dt. 
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• In the easiest case, with a constant magnetic field B, and a 
flat surface of area A, the magnetic flux is 

 

B = B · A 

 

• Units :  1 tesla  x m2  = 1 weber 

Magnetic Flux 
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Magnetic Flux 

• When B is not constant, or the surface is not flat, one must  

 do an integral. 

• Break the surface into bits dA. The flux through one bit is  

                     dB = B · dA = B dA cosq. 

• Add the bits:   
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Faraday’s Law 

• Moving the magnet changes the flux B (1). 

• Changing the current changes the flux B (2). 

• Faraday: changing the flux induces an emf. 
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e = - dB /dt 

The emf induced 
around a loop 

equals the rate of change 
of the flux through that loop 

Faraday’s law 
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Lenz’s Law 

• Faraday’s law gives the direction of the induced emf and therefore 
the direction of any induced current. 

 

• Lenz’s law is a simple way to get the directions straight, with less 
effort. 

 

• Lenz’s Law: 

The induced emf is directed so that any induced current flow  

will oppose the change in magnetic flux (which causes the 

induced emf). 
 

• This is easier to use than to say ... 

 Decreasing magnetic flux  emf creates additional magnetic field 

 Increasing flux  emf creates opposed magnetic field 



Lenz’s Law 

If we move the magnet towards the loop  

the flux of B will increase.  

Lenz’s Law  the current induced in the 

loop will generate a field B opposed to B. 
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Lenz’s Law 

If we move the magnet towards the loop  

the flux of B will increase.  

Lenz’s Law  the current induced in the 

loop will generate a field B opposed to B. 
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Example of Faraday’s Law 

B 

Consider a coil of radius 5 cm with N = 250  turns.  
A magnetic field B, passing through it,  
changes in time:  B(t)= 0.6 t [T]        (t = time in seconds) 
The total resistance of the coil is 8 W. 
What is the induced current ? 

Use Lenz’s law to determine the 
direction of the induced current. 
 
Apply Faraday’s law to find the 
emf and then the current. 



Example of Faraday’s Law 

B 

Hence the induced current must be 
clockwise when looked at from above.  

Lenz’s law: 
 

The change in B is increasing the 
upward flux through the coil. 
 

So the induced current will have  
a magnetic field whose flux  
(and therefore field) are down. Induced B 

I 

Use Faraday’s law to get the magnitude of the induced emf and current. 
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Induced B 
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Thus 

e = - (250) (p 0.0052)(0.6T/s)  = -1.18 V      (1V=1Tm2 /s) 

Current I  = e / R = (-1.18V) / (8 W)  = - 0.147 A 
It’s better to ignore the sign and get directions from Lenz’s 

law. 

The induced EMF  is  e = - dB /dt  

Here  B =  N(BA)  = NB (pr2)  

Therefore e = - N (pr2) dB/dt  

Since B(t) = 0.6t,   dB/dt = 0.6 T/s 
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Magnetic Flux in a Nonuniform Field 

A long, straight wire carries a current I. A rectangular 
loop (w by l) lies at a distance a, as shown in the figure. 
What is the magnetic flux through the loop?. 
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Induced emf Due to Changing Current 

A long, straight wire carries a current I = I0 + a t. 
A rectangular loop (w by l) lies at a distance a,  
as shown in the figure. 
What is the induced emf in the loop?. 
What is the direction of the induced current and field? 
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Up until now we have considered fixed loops.  
The flux through them changed because the  

magnetic field changed with time.  
 
Now try moving the loop in a uniform and constant 
magnetic field. This changes the flux, too. 
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The flux is B =  B A  =  BDx 

This changes in time:   
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Motional EMF - Use Faraday’s Law 
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The flux is B =  B A  =  BDx 

This changes in time:   

dB / dt = d(BDx)/dt  = BDdx/dt  = -BDv 

Hence by Faraday’s law there is an induced emf and 
current. What is the direction of the current? 

 

x  x x x x 

 

x x Bx x x 

 

x x x x x 

R 

x 

D 

v . 

Motional EMF - Use Faraday’s Law 

. . 



x  x x x x 

 

x x Bx x x 

 

x x x x x 

R 

x 

D 

v 

The flux is B =  B A  =  BDx 

This changes in time:   

dB / dt = d(BDx)/dt  = BDdx/dt  = -BDv 

Hence by Faraday’s law there is an induced emf and 
current. What is the direction of the current? 

Lenz’s law: there is less inward flux through the loop. 
Hence the induced current gives inward flux. 

 So the induced current is clockwise. 
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Now Faraday’s Law e  = -dB/dt  

gives the EMF  e =  BDv  
 

In a circuit with a resistor, this gives 

 e  =  BDv = IR    I = BDv/R 
 

Thus moving a circuit in a magnetic field  
produces an emf exactly like a battery.  
This is the principle of an electric generator. 

. 

Motional EMF 
Faraday’s Law 



Maxwell’s Equations of Electromagnetism 

E dA
q

  
e0

B dA   0

E dl
d
dt

B
   



Gauss’ Law for Electrostatics 

Gauss’ Law for Magnetism 

Faraday’s Law of Induction 

Ampere’s Law B dl I
d
dt

E
     e0 0 0





Maxwell’s Equations of Electromagnetism 
in Vacuum (no charges, no masses) 

Consider these equations in a vacuum..... 
               ......no mass, no charges. no currents..... 

B dl
d

dt
E

    e0 0


E dl
d

dt
B

   


E dA
q

  
e0

B dA   0

B dl I
d
dt

E
     e0 0 0



E dA   0

E dl
d

dt
B

   


B dA   0



Maxwell’s Equations of Electromagnetism 
in Vacuum (no charges, no masses) 

E dA   0

B dA   0

E dl
d

dt
B

   


B dl
d

dt
E

    e0 0




Energy in Electromagnetic Waves 
Energy density in matter for static fields   
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Energy in Electromagnetic Waves 

Average energy over one cycle of light wave 
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Energy in Electromagnetic Waves 
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Poynting Vector 

N = E x H is the Poynting vector 
 
Equal to the instantaneous energy flow associated  
with an EM wave 
 
In vacuum N || wave vector k 
 
Example If the E amplitude of a plane wave is 0.1 Vm-1 

Energy crossing unit area per second is 

25

o

o2

ooo  Wm1.3.10E
2

1
HE

2

1 
e





Future Scope and relevance to industry 

 
• https://www.researchgate.net/publication/29

5291761_Applications_of_Faraday's_Laws_of
_Electrolysis_in_Metal_Finishing 

• http://iopscience.iop.org/article/10.1088/014
3-0807/33/3/L15 

• http://iopscience.iop.org/article/10.1088/014
3-0807/33/2/397 
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